Exercise 34

An integral equation is an equation that contains an unknown function $y(x)$ and an integral that involves $y(x)$. Solve the given integral equation. [Hint: Use an initial condition obtained from the integral equation.]

$$
y(x)=2+\int_{1}^{x} \frac{d t}{t y(t)}, \quad x>0
$$

Solution

Right away we see that if we plug in $x=1$ to the integral equation, we get

$$
\begin{aligned}
y(1) & =2+\int_{1}^{1} \frac{d t}{t y(t)} \\
& =2+0 \\
& =2,
\end{aligned}
$$

so the initial condition is $y(1)=2$. In order to solve for $y(x)$ by the method introduced in this section, differentiate both sides of the integral equation with respect to x.

$$
\frac{d}{d x} y(x)=\underbrace{\frac{d}{d x}}_{=0} 2+\frac{d}{d x} \int_{1}^{x} \frac{d t}{t y(t)}
$$

By the fundamental theorem of calculus,

$$
\frac{d}{d x} \int_{1}^{x} \frac{d t}{t y(t)}=\frac{1}{x y(x)}
$$

so the differential equation we need to solve is the following.

$$
\frac{d y}{d x}=\frac{1}{x y}
$$

This is a separable equation, which means we can solve for $y(x)$ by bringing all terms with y to the left and all constants and terms with x to the right and then integrating both sides.

$$
\begin{aligned}
d y & =\frac{1}{x y} d x \\
y d y & =\frac{d x}{x} \\
\int y d y & =\int \frac{d x}{x} \\
\frac{1}{2} y^{2} & =\ln |x|+C \\
y^{2} & =2 \ln x+C_{1} \\
|y| & =\sqrt{2 \ln x+C_{1}} \\
y(x)= & \pm \sqrt{2 \ln x+C_{1}}
\end{aligned}
$$

Now we use the initial condition, $y(1)=2$ to determine C_{1}.

$$
\begin{aligned}
y(1)= \pm \sqrt{C_{1}} & =2 \\
C_{1} & =4
\end{aligned}
$$

Even though both functions for y satisfy the differential equation, only the positive one satisfies the integral equation. Therefore,

$$
y(x)=\sqrt{2 \ln x+4}, \quad x \geq e^{-2} .
$$

The domain is found by setting $2 \ln x+4 \geq 0$.

